The Cost of Medicine and other Interests

Jennifer A. Vickers, MD

Continuum of Care Project, Principal Investigator

Associate Professor of Neurology

Conflict of Interest Disclosure Speaker: <u>Jennifer A. Vickers, MD</u>

3.

>	The de net have any per	ential conflicts of interest to disclose, OR		
L	2. I wish to disclose the fo	ollowing potential conflicts of interest:		
	Type of Potential Conflict	Details of Potential Conflict		
	Grant/Research Support			
	Consultant			
	Speakers' Bureaus			
	Financial support			
	Other			
	3. The material presented in conflicts, OR	this lecture has no relationship with any of these potential		
L	4. This talk presents material that is related to one or more of these potential conflicts, and the following objective references are provided as support for this lecture:			
	1.			
	2.			

Objectives

- Review cost of laboratory testing: Genetic tests, and general lab tests
- Review cost of medications
- Review the cost of creating a new medication
- Alternative therapies
 - Surgical interventions and their cost.
 - Dietary therapies
- Review of Medical Cannabis

Laboratory tests

Lab tests

- Chromosome Microarray testing (AKA Comparative Genomic Hybridization)
 - Uses oligonucleotides to match up base pairs.
 - Identifies deletions or duplications on chromosomes
- Whole Exome testing
 - A technique for sequencing protein coding genes on the DNA molecule.
 - Identifies abnormalities involved in protein function.

Cost of Laboratory Testing

- Chromosome Microarray (aka Comparitive Genomic Hybridization).
 - Athena not clearly available
 - ARUP \$1,595 for self pay
 - Baylor Miraca Genetics Lab \$950 \$14,075
 - CD Genomics refused to give information
 - Gene Dx DNA Diagnostic Experts \$1,117 self pay, \$3,000 insurance

Cost of Laboratory testing

- Whole exome testing: (Rough estimates)
 - Athena self pay \$4,750 for proband, and \$8,500 for proband and parents.
 - ► ARUP \$7,900
 - Baylor Miraca Genetics Lab \$7,000 self pay and \$11,950 insurance
 - CD Genomics Refused to give information
 - Gene Dx DNA Diagnostic Experts Proband \$5,000, Trio \$7,000 for self pay and \$20,060 insurance

Cost of Laboratory Testing

- Complete Metabolic Panel \$46.39
- CBC with differential \$27.24
- Phenytoin (Dilantin) level \$72.35
- Valproate (Depakote) level \$77.51
- ► Levetiracetam (Keppra) Level \$220.06

Cost of medications

Cost of Medications

Medication Name	Generic vs Brand name
tablets	

- Carbamazepine
- Levetiracetam
- Perampanel
- Phenobarbital
- Phenytoin
- Topiramate
- Valproic Acid
- Valproate ER

Why the mark up?

Why is levetiracetam \$5.09 and Phenobarbital 8 – 9¢

OH

- Step 1: Preclinical evaluations:
 - New chemical entities (NCEs) are identified.
 - The NCEs are assessed for:
 - Chemical make-up
 - Stability
 - **■**Solubility
 - Pharmacodynamics
 - Pharmacokinetics.

$$H_3C$$
 OH H_3C

Step 2: FDA Regulatory Requirements must be fulfilled

- Animal pharmacology and toxicology studies.
- Manufacturing information: Can the medication be reliably made in large quantities and remain stable?
- Clinical protocols must be submitted.

Information about the investigator needs to be

reviewed.

Step 3: Clinical Trials

Phase	Aim	Notes
Phase 0	Documentation of pharmacodynamics and pharmacokinetics in humans	Single subtherapeutic doses of the study drug are given to 10 – 15 subjects. The trial documents: absorption, distribution, metabolism, and excretion of the drug, and the drug's interactions within the body. Confirmation that these are as expected.
Phase 1	Screening for safety.	Testing of 20 – 80 people to evaluate safety, determine safe dosage ranges, and begin to identify side effects. Phase 1 trials are not expected to identify all side effects.
Phase 2	Establishing the efficacy of the drug, usually against a placebo.	Testing with 100 – 300 people to see if it is effective and to further evaluate its safety.
Phase 3	Final confirmation of safety and efficacy.	Testing with 1,000 – 3,000 people to confirm effectiveness, monitor side effects, and compare it to commonly used treatments.
Phase 4	Safety studies during sales.	Postmarketing studies providing additional information, including the treatment's risks, benefits, and optimal use.

Final Valuation

- The full cost from discovery to market is complex and controversial. Complicating factors include:
- High attrition rates
 - Of 5,000 10, 000 NCEs, 250 will be tested in laboratory animals.
 - Of the 250 compounds tested on animals 10 will qualify for human testing.
 - Of the 10 that make Phase 1 clinical trials, 2 will make it to market.
- Long timelines:
 - Most drugs take 8 10 years to go through the entire process.
- Large capital expenditures:
 - 2003 estimated cost 800 million dollars
 - 2006 estimated cost 1 billion dollars.
 - 2010 estimated cost 1.2 billion dollars.
 - 2013 estimated cost 5 billion dollars.

Where does all that money go?!

Reality

More

Pharmaceutical industry employees

Another "dose" of reality

- \$100,000,000 price tag for development of drug X.
 - 10,000,000 patients have a disorder potentially treatable by drug X.
 - Cost of drug \$10 per pill.
 - Metoprolol 7 20¢ per tablet
 - 10,000 patients have a disorder potentially treatable by drug X.
 - Cost of drug \$10,000 per pill
 - Rituximab \$4,078 per 10 mg (1000 mg every 2 weeks for Rheumatoid Arthritis)
- Duration of the need for medication will affect cost.

Other options for treatment

Other therapeutic options for epilepsy treatment

- Dietary therapy
- Vagus Nerve Stimulator
- Responsive Nerve Stimulator
- Temporal lobectomy
- Corpus callosotomy

Dietary therapies

- Requires a team approach
 - Dietician
 - Physician
 - Nurse
 - Foods and possibly formula
 - Scale
 - Routine blood tests

Vagus Nerve Stimulator

Acta Neurol Belg. 1999 Dec;99(4):275-80.

- Cost-benefit of vagus nerve stimulation for refractory epilepsy.
 - Mean seizure frequency: ↓ from 14 seizures/month (2 40) to 9 seizures/month (0 30) (p = 0.0003).
 - Yearly related direct medical costs per patient: ↓ \$6,682 (\$829 \$21,888 USD) to \$3,635 (\$684 \$12,486 USD) (p = 0.0046).
 - Mean number of days of hospital admissions: ↓ from 16 days/year (0 60) to 4 days/year (0 30) (p = 0.0029).

Downside:

- Responder rate is ~40%.
- Unable to test effectiveness in advance.

Vagus Nerve Stimulator

J Neurosurg 115:1248–1255, 2011

- Meta-analysis of studies.
- Seizure reduction was 36.2% ± 0.5% in 1178 patients seen ≤ 1 year after surgery
- Seizure reduction was 51.0% ± 0.5% for 1247 patients seen > 1 year postoperatively.
 - Tuberous sclerosis seizure reduction 68.1% ± 4.6%
 - ► Lennox-Gastaut syndrome or other epileptic encephalopathies had a reduction of 47.8% ± 1.9%.

Responsive cortical stimulation for the treatment of medically intractable partial epilepsy.

Neurology. 2011 Sep 27;77(13):1295-304

Mean % change in seizure freq. during the blinded eval. per., intent-to-treat population

Blinded evaluation period	Treatment (n 97)	Sham(n 94)	p Value
Mean%change from preimplant perio	o <mark>d</mark>		
Entire BEP (n 191)	37.9% (46.7%, 27.7%)	17.3% (29.9%, 2.3%)	0.012
Month 1 (3rd month postop)	34.2% (44.1%, 22.6%)	25.2% (37.1%, 11.1%)	0.279
Month 2 (4th month postop)	38.1% (47.3%, 27.3%)	17.2% (30.5%, 1.3%)	0.016
Month 3 (5th month postop)	41.5% (52.0%, 28.7%)	9.4% (29.5%, 16.4%)	0.008

Abbreviations: BEP blinded evaluation period

Responsive Neuro-Stimulator (RNS)

- Average cost \$35,000 to \$40,000
- Seizure frequency decrease ranged from 40 70%.
- Downside:
 - Only 1 or 2 seizure foci
 - Battery only lasts 3 5 years
 - Limited number of institutions available (NM without any)

Resective Surgery

- Video EEG monitoring
 - Determine localization
 - Determine events are seizures
- Magneto-Encephalography
- Positron Emission Tomography
- Intracranial monitoring
- Wada Testing
- Surgery

- Cost is highly variable dependent on:
 - The institution involved.
 - The number of studies needed.

Extra-temporal Surgical Resection outcome

J Neurosurg. 2006 Apr;104(4):513-24 and e-medicine review

- 372 (93%) underwent temporal and 27 (7%) had extratemporal resection
- Engle Class 1 surgery outcome:
 - Seizure free or no more than a few early, nondisabling seizures
 - or seizures upon drug withdrawal only
- 55% of seizure recurrences occurred within 6 months of surgery
- 93% of seizure recurrences occurred within 2 years after surgery.

		6 months	1 year	2 years	5 years	10 years
	Temporal Resection	83% (80-87%)	80% (76-85%)	78% (74-83%)	76% (71-81%)	74% (69-79%)
	Extratemporal Resection	50% (34-74%)				42% (26-66%)
		Brain. 2007 Feb. 130:574- 84.	56%	45%	30%	

Corpus callosotomy

- Corpus callosotomy is a palliative procedure to limit or modify tonic/atonic seizures
- The seizures still occur as partial seizures, but they do not result in falls.
- 80% average reduction in tonic/atonic seizures resulting in falls
- 50% reduction in generalized tonic and tonic-clonic seizures
- 50% atypical absence seizures
- Overall, success rates are similar between children and adults
- Effects are sustained long term.

Medical Cannabis

History

- Initially used in China 5,000 BC
 - Malaria
 - Constipation
 - Rheumatic pain
 - Absentmindedness
 - "female disorders"
 - Mixed with wine and resin it was used as an analgesic in surgery

- Uses in ancient India and Africa:
 - "Quickens the mind"
 - Lowers fever
 - Induce sleep
 - Cures dysentery
 - Appetite stimulation
 - Improve digestion
 - Relieve headaches
 - Cures venereal disease

History

- WB O'Shaughnessy The first western physician to take an interest in cannabis as a medicine.
 - A professor at the Medical College of Calcutta, India.
 - Observed its use in India.
- He gave cannabis to animals, to ensure it was safe
- Began to using it with patients suffering from:
 - rabies
 - rheumatism
 - epilepsy
 - tetanus
- In his report in 1839 he wrote:
 - "A tincture of hemp" (a solution of cannabis in alcohol, taken orally) is an "impressive analgesic."
 - "An anticonvulsant remedy of the greatest value."

The corner drug store in the late 1800s

Marijuana

Cocaine

Heroin

Morphine

Alcohol

Series of laws

- Pure Food and Drug Act of 1906
 - Signed into law by Theodore Roosevelt
 - Limited interstate food and drug transport
 - Identified 10 substances deemed addictive or dangerous.
 - Validated what was in the drugs.
 - Enforced by the Bureau of Chemistry.
- Federal Meat Inspection Act of 1906
 - Demanded truth in labeling
 - Monitored sanitation practices
- The 18th Amendment
 - Signed January 16, 1919
 - Took effect on January 16, 1920.

$\mathcal{J}U\mathcal{N}GLE$

UPTON SINCLAIR

Introduction by JANE JACOBS

With a new Afterword by ANTHONY ARTHUR

- Food and Drug Administration 1930
 - Replaced the Bureau of Chemistry.
- The 21st Amendment
 - Repealed Dec. 5, 1933
- Food, Drug, and Cosmetic Act (1938)
 - Johnson's Mild Combination Treatment for Cancer
 - Banbar treatment for Diabetes
 - Elixer Sulfanilamide
 - Signed by FD Roosevelt

- Thalidomide 1962
- Comprehensive Drug AbusePrevention and Control Act of 1970:
 - Broke drugs into 5 categories based on
 - Potential for abuse
 - Medical use
 - Safety

Here we are today!

- Charlotte Figi
 - Onset of seizures at 3 months of age.
 - Diagnosed with SCN1A mutation Dravet Syndrome.
 - Lost skills and by age 5 years was:
 - G-Tube dependent
 - Struggled to walk and talk
 - ► Full assist with ADLs
 - 50 GTC seizures daily.

Mom heard about Medical Cannabis

She researched the literature

CBD Oil seemed to be effective

Found two brothers who were developing high CBD strain of Cannabis.

20 months after beginning "Charlottes Web"

- Only 2 3 nocturnal seizures per month
- Eating and drinking by mouth independently
- Sleeping soundly through the night
- Autistic behaviors have improved.
- Walking and talking again.

Two main branches to Cannabis

Δ₉ Tetrahydrocannabinol (THC)

- Identified in 1990
- Affects CB₁ Receptors on the brain
- Conflicting reports re: anticonvulsant properties
- Psychotropic side effects rate limiting

Cannabadiol (CBD)

- Believed to affect multiple receptors
- Does not have clear toxic side effects
- Does not possess psychotropic effects
- More consistently anticonvulsant.
- Seems to possess anxiolytic effects
- Although it doesn't have psychotropic effects, it is still classified as a class one medication

Studies

Cunha JM et al, Pharmacology 1980;21:175-85

- Phase 2 trial
- 15 patients all with intractable FOE
- 8 randomized to 200 300 mg
 CBD oil daily and 7 placebo
- Duration 4.5 months
- 4 "almost seizure free", 3 "partial improvement, 1 "worse".
- Placebo arm 1 "almost seizure free"

Ames & Cridland, South African Med Journ. 1985;69:14

- 12 patients with DD and intractable seizures
- 6 subjects 200 mg cannabidiol and 6 subjects - sunflower oil.
- test duration 3 weeks
- Seizure activity unchanged.
- Those on cannabis had mild drowsiness

Further studies

Porter & Jacobson, Epilepsy and Behavior 2013; 29:574-577

- 24 question online survey
- offered on Facebook support group
- 150 parents supporting Medical cannabis
- 20 responses received.
 - 13 w/ Dravet syndrome
 - 4 w/ Doose syndrome
 - 1 w/ Lennox Gastaut syndrome
- 2nd survey with same questions regarding Stiripentol.

Hussain SA et al, Epilepsy and Behavior 2015;47:138-141

- Online survey
- Multiple online forums targeting groups involved with Infantile Spasms and Lennox Gastaut syndrome
- 200 unique responses received 117 met criteria
 - 45 w/ infantile spasms
 - 24 w/ Lennox Gastaut syndrome
 - 15 w/ Dravet syndrome
 - 5 w/ Doose syndrome
 - 44 unknown

Study results

Porter & Jacobson

Seizure syndrome	seizure free	improved control	no change	worse
IS and LGS	13%	79%	8%	0
Dravet	13%	60%	13%	13%
others	15%	69%	10%	6%

Adverse effects: increased appetite, wt gain, and drowsiness

Positive effects: Improved sleep, increased alertness,

better mood

Hussain SA et al

- 16 of 19 reported seizure reduction
 - 2 of 16 report child is seizure free
 - 8 > 80% reduction
 - 3 > 50% reduction
 - 3 > 25% reduction
- 3 of 19 report no change
- Adverse effects: drowsiness and fatigue
- Positive effects: better mood, increased alertness, better sleep, and decreased self-stimulation.

Parental reporting of response to oral cannabis extracts for treatment of refractory epilepsy

Press, CA, Knupp, KG, and Chapman, KE. Epilepsy and Behavior 2015;45:49 - 52

- Retrospective chart review 75 patients
 - 34 had moved to Colorado to obtain medical cannabis
- 43 (57%) reported at least some improvement in seizures
- 25 (33%) reported a >50% reduction in seizures
- Seizure syndromes:
 - one with STXBPA1 mutation had worsening of seizurse
 - one with ESES didn't have any change.
 - 3/13 (23%) w/ Dravet syndrome >50% response
 - 0/3 (0%) w/ Doose syndrome
 - 8/9 (89%) w/ Lennox Gastaut syndrome >50% response

Press CA et al - conclusions

- 33% reported seizure reduction of more than 50% in response to Cannabis extracts
 - Colorado residents 22% seizure reduction of > 50%
 - Families that moved to Colorado to obtain medical cannabis 47% seizure reduction of > 50%.
 - Four FDA medications and placebo improvement rates:
 - Clobazam 31.6%
 - Perampanel 26.4%
 - Esclicarbazepine 20%
 - ► Ezogabine 21%
 - EEG activity did not improve

PROBLEMS!!!!

- Significant patient/parent bias
- CBD vs THC and combination ratios unknown
 - Is it really CBD or THC?
 - Who is checking what is in the bottle?
- Cannabis is still a Class 1 medication.

One other problem Affect on developing brains?!

Honarmand K et al, Neurology 2011;76:1153-60

- 2 groups of pts with MS
 - Cannabis users 25
 - Non-cannabis users 25
- Battery of neuropsych testing
 - Working memory
 - Processing speed
 - Executive functions
 - Visuospatial perception
- Cannabis users did significantly worse compared to non-users.

Pavisian B et al, Neurology 2014;82:1879-87.

- 2 groups of patients with MS
 - Cannabis users 20
 - Non-cannabis users -19
- Underwent functional MRI with neuropsych testing
- Cannabis users did worse.
- fMRI showed:
 - Disorderly pattern of cerebral activation in cannabis users
 - Attempt to compensate with increased task complexity?

Conclusion:

- Medical Cannabis Probably has a place in treating epilepsy
- Intriguing response in patients with Dravet and Lennox Gastaut syndrome
- Further testing should be done
- Will it be greater than any other treatment previously seen?
- What will be the cost?

Questions?

